|
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
老百晓在线![]() ![]() ![]() |
《小数乘整数》教学设计之一 | ||
---|---|---|
作者:佚名 |
教学目标: 1.使学生理解小数乘整数的算理,掌握小数乘整数的一般方法,会比较熟练地进行笔算。 2.使学生经历将小数乘整数转化为整数乘整数的过程,自主探索小数乘整数计算方法的过程,渗透转化的数学思想,培养简单的逻辑推理能力。 3.使学生体会小数乘法在实际生活中的应用,感受数学源于生活,生活需要数学,形成积极的学习态度。 教学重点:掌握小数乘整数的一般计算方法。 教学难点:理解小数乘整数的算理。 教学准备:课件。 教学过程: 一、情境引入,提出问题 (一)课件呈现,寻找信息 1.课件呈现“放风筝”的情境以及各种不同形状的风筝。 2.课件呈现“买风筝”的情境(例1的主题图),画面上醒目地显示四种形状各异、价格不同的风筝。 3.设问:从图中你能看出哪些数学信息? (二)提出问题,揭示课题 1.这节课我们就一起先来解决“买3个蝴蝶风筝多少钱”的问题,你能列出算式吗?(教师板书或PPT课件呈现:3.5×3=) 2.追问:这个算式和我们以前学过的算式有什么不同呢? 3.引导:今天我们就来学习小数乘整数。(板书课题:小数乘整数) 二、自主尝试,感悟算理 (一)感知算理 1.算一算:3.5×3,可以怎样计算? 给足时间,让每一位学生根据自己的知识和经验独立计算出买3个蝴蝶风筝所需的钱数。教师巡视,注意发现学生中的不同计算思路。 2.说一说:你是怎样计算的? 学生的计算思路可能有:用加法进行计算;改写为复名数进行计算;化“元”为“角”进行计算等。 (二)重点分析、研讨化“元”为“角”算法的算理 1.组织全班学生对上述多种不同解法逐一进行分析、评价和充分肯定。 2.引导学生着重分析化“元”为“角”的计算方法。 (1)师:上述几种算法中,你认为哪种算法比较简单?这种算法中的关键是什么? (2)学生分析、对比、讨论后,引导学生用简洁的话总结、概括:先把3.5元转化为35角,再计算35角×3,最后将结果105角转化成10.5元。 (3)教师边小结边适时板书(或PPT课件动态呈现)如下竖式计算过程: ![]() (4)小结:刚才我们在解决“买3个蝴蝶风筝多少钱”的问题时,想到了各种不同的计算方法。我们发现以“元”作单位的小数乘整数,可以转化成以“角”(或“分”)作单位的整数乘整数来进行计算。 【设计意图】依托现实情境,让学生利用已有的知识经验,用自己理解的方法自主解决问题。在充分肯定学生的其他合理方法之后,着重分析和评价化“元”为“角”的算法,引导学生总结、概括这种算法的思考过程,体会小数乘法和整数乘法的联系,感受小数乘整数还可以转化成整数乘整数进行计算,初步感悟小数乘整数的算理和算法,培养学生的数学思维能力。 (三)巩固化“元”为“角”的计算方法 1.第2页“做一做”第1题。 (1)学生独立完成,教师指名演板。 (2)重点评价“把4.6元看作46角”进行计算的方法。 2.第2页“做一做”第2题。 (1)学生独立完成。 (2)组织学生交流解决问题的思路和方法(主要关注下面两种方法)。 方法一:先算出具体的钱数6.4元×7=44.8元,再与40元进行比较,做出判断。 方法二:直接通过估算解决,一个燕子风筝的价格是6.4元,超过了6元,买7个就超过了42元,所以40元不够。 (3)拓展:50元够吗? 三、运用转化,探究算法 (一)动态呈现小数乘整数的过程 1.出示算式0.72×5=?,提问:“0.72不是钱数,怎样计算?” 2.让学生独立思考,再引导学生提出:“能不能转化成整数来计算?” 3.学生尝试列竖式计算。(教师巡视,了解学生的计算方法。) 4.小组交流计算方法。 5.学生全班集体交流转化过程和计算方法,教师适时板演(或PP课件演示)乘法竖式计算过程,帮助学生理解算理算法。 (教师重点引导学生理解三点:怎样把因数0.72转化成整数?乘得的积应如何处理?积末尾的“0”如何处理?从而使学生更好地理解算理。) 由于因数0.72化成整数72必须“×100”,所以要使积不变,积360应“÷100”。 ![]() (二)将乘得的积化成最简小数 请学生观察乘得的积“3.60”,提问:3.60是最简小数吗?(不是!)提醒学生,乘得的积如果不是最简小数,可以根据小数的基本性质将积中小数末尾的0去掉。 (三)小结小数乘整数的一般方法 1.引导学生回顾3.5×3、0.72×5的计算过程。 2.提问:“想一想,在计算小数乘整数时,你先做什么?再做什么?最后又做什么?” 3.引导学生在理解的基础上归纳小数乘整数的一般方法: (1)先将小数转化为整数; (2)按整数乘法算出积; (3)再确定积的小数点位置。(因数有几位小数,就从积的右边起数出几位,点上小数点。若积的末尾有“0”,末尾的“0”可以去掉。) 四、拓展应用,巩固新知 (一)专项练习 1.小数乘整数与整数乘整数的对比。(第3页“做一做”第1题) ![]() 想一想:小数乘整数与整数乘整数有什么不同? (1)引导学生审题,明确题目要求,学生独立完成。 (2)组织学生交流、讨论,归纳小数乘整数与整数乘整数的不同:小数乘整数中有一个因数是小数,整数乘整数中两个因数都是整数;小数乘整数的积中,若小数末尾有0,这个0可以去掉,但整数乘整数的积末尾的0不能去掉。 2.确定积的小数点。(第3页“做一做”第2题) ![]() (1)学生独立完成。 (2)组织学生交流:你是怎样确定积的小数点的位置的?积末尾的0是怎样处理的? (三)趣味练习(智慧岛) 1.小狗登城堡。 ![]() 2.小金鱼戏水。 ![]() 3.小蜜蜂采蜜。 ![]() (四)应用练习 1.练习一第3题。 (1)引导学生正确用合适的方法估计自己家到学校的路程。如:用步测的方法估计,知道自己的步长约为0.6?m,从自己家到学校约走多少步,用步长0.6?m乘走的步数,就得到自己家到学校的大致路程。 (2)通过计算自己每天、每周上学要走的路程,巩固小数乘整数的计算方法,加深对一千米有多长的具体的感受。 五、课堂总结,深化新知 这节课我们学到了什么?你是怎么学会的? 六、课外作业 做一做的第三题。练习一第1、4、5题。 |
||||
![]() |
摘自《百度文库》网站 | |||
上一篇 | |||
下一篇 | |||