|
![]() |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
老百晓在线![]() ![]() ![]() |
《数的认识》教学设计之一 | ||
---|---|---|
作者:佚名 |
【教学目标】 使学生比较系统地掌握有关整数、分数、小数、百分数和负数的基础知识,进一步弄清概念间的联系和区别。 【教学重难点】 1.使学生比较系统的掌握自然数和整数的基础知识。 2.弄清概念间的联系和区别。 【教学过程】 一、谈话导入 1.教师:同学们,谁能说一说小学六年中我们都学过哪些数?你能举出生活中利用这些数的例子吗?说明每个数的具体含义。 请学生拿出课前收集的数据来汇报,指名在黑板上写下这些数。 其他同学注意倾听,听一听数读得是否正确,看一看黑板上的数写得对不对。 2.教师用课件出示一组数,弥补学生的不足。 (课件出示: 如:珠穆朗玛峰高达8844.43m。 南极洲年平均气温只有-25。 今年我市空气质量达到良好的天数占全年的。 这本词典有1722页。 一条围巾的成分:羊毛40%、化纤60%。) 3.把黑板上的数分一分类。 4.揭示课题。 同学们回答得很正确,这就是我们在小学阶段学习的几种数,这几节课我们就把这几种数的意义和有关知识进行整理和复习,我们今天先复习自然数和整数。(板书课题:数的认识) 二、归纳整理 自然数和整数。 1.教师提问:什么样的数是自然数?0表示什么?有没有最小的自然数?有没有最大的自然数? 2.教师提问:谁知道我们学习的哪些数是整数? 学生回答后,教师提出问题:能不能说整数就是自然数?让学生想一想,议一议,说一说。 教师向学生说明:我们小学阶段学习的整数,除了自然数,还学习了一些小于零的整数即负整数,这些负整数到中学要更深入的学习。 结合上面的复习和板书,将板书补充成如下形式: 3.小组整理数的其他知识。提问:关于数的知识你还知道哪些? (1)学生自由发言。 (2)小组合作学习,重点讨论下面的问题。(出示讨论题) a.什么是十进制计数法? b.你能说出哪些计数单位? c.怎样比较两个数的大小? 根据学生的回答教师完成整数、小数的数位顺序表。 教师说明:整数和小数都是按十进制计数法写出得数,其中个、十、百……以及十分之一、百分之一……都是计数单位。各个计数单位所站的位置,叫做数位。数位是按一定的顺序排列的。 练一练:填空(口答)。 27046=2×( ) 7×( ) 0×( ) 4×( ) 6×( ) 说出4004.04这个数中的三个“4”分别在什么数位上,各表示什么,这个数中的三个“0”各起什么作用? 4.怎样比较两个数的大小?举例说明。 引导学生从整数、小数、分数三个方面回答。 整数、小数的比较方法。 比较分数大小的方法,从同分母、同分子、异分母三个方面小结。教师逐一指名回答。 分数和小数 1.组织学生分组活动,复习有关分数的知识。 2.每个小组选一个代表发言,展示整理和复习的结果。 教师结合各个小组整理和复习的情况,及时予以肯定和鼓励,并注意突出“分数的意义、分数单位和分数与除法的关系”,同时还可以做如下板书: 分数和除法的关系:a÷b= (b≠0) 3.通过直观图形,导入对小数意义的整理和复习。 4.教师提出以下问题,让学生分小组讨论。 (1)什么样的数可以用小数表示? (2)小数和分数有什么关系? (3)什么是循环小数?循环小数可以怎样写?小数是不是都小于1? 5.组织各小组对上面提出的问题发表看法,教师板书如下: 6.分数的基本性质和小数的基本性质有什么关系?小数点移动位置,小数的大小会发生什么变化? 分别说出分数的基本性质、小数的基本性质的内容是什么?举例说明。 板书:0.1=0.10=0.100=…… =…… 分数的基本性质和小数的基本性质有什么关系? (因为小数可以看做分母是10、100、1000……的分数,所以小数的基本性质是分数的基本性质的特殊情况。) 练习:填空(口答)。 做一做,说一说。引导学生说出小数点的位置移动,引出小数大小变化的规律。 下面这组数有什么特点?他们有什么规律? 0.108 1.08 10.8 108 108 百分数 (1)教师指着黑板上的板书:自然数、整数、分数、小数、百分数。 提问:我们已整理复习了有关自然数、整数、分数、小数的知识,谁能说一说,这节课的学习任务已经完成了百分之几?还有百分之几没有完成? (2)结合刚才的回答,谁能说一说:什么样的数叫做百分数? (3)“一节课的任务已经完成了80%”也可以说“已经完成了”,我们能不能因此就说百分数和分数的意义完全相同呢? 请同学们议一议:百分数和分数有什么区别与联系? 结合学生的回答,教师板书:百分数常用%来表示。百分数只表示一个数是另一个数的百分之几,不表示具体的数量,百分数与分数的意义不完全相同。 (4)学生质疑,师生共同解疑。 三、课堂作业 教材73页第3~4题。 学生独立完成并在小组中相互交流,教师巡视并针对具体情况进行指导。 四、课堂小结 通过复习,请你们把自然数和整数的有关知识整理一下并在小组中交流。 第2课时 【教学目标】 1.进一步熟知“鸽巢原理”的含义,会用“鸽巢原理”熟练解决简单的实际问题。 2.经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。 3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。 【教学重难点】 重点:应用“鸽巢原理”解决实际问题。引导学会把具体问题转化成“鸽巢问题”。 难点:理解“鸽巢原理”,找出”鸽巢问题“解决的窍门进行反复推理。 【教学过程】 一、复习导入 教师讲《月黑风高穿袜子》的故事。 一天晚上,毛毛房间的电灯突然坏了,伸手不见五指,时他又要出去,于是他就摸床底下的袜子,他有蓝、白、灰色的袜子各一双,由于他平时做事随便,袜子乱丢,在黑暗中不知道哪些袜子颜色是相同的。毛毛想拿最少数目的袜子出去,在外面借街灯配成相同颜色的一双。你们知道最少拿几只袜子出去吗? 在学生猜测的基础上揭示课题。 教师:这节课我们利用鸽巢问题解决生活中的实际问题。 二、新课讲授 1.教学例3。 盒子里有同样大小的红球和蓝球各4个,要想摸出的球一定有2个同色的,最少要摸出几个球? (出示一个装了4个红球和4个蓝球的不透明盒子,晃动几下) 师:同学们,猜一猜老师在盒子里放了什么? (请一个同学到盒子里摸一摸,并摸出一个给大家看) 师:如果这位同学再摸一个,可能是什么颜色的?要想这位同学摸出的球,一定有2个同色的,最少要摸出几个球? 请学生独立思考后,先在小组内交流自己的想法,验证各自的猜想。 指名按猜测的不同情况逐一验证,说明理由。 摸2个球可能出现的情况:1红1蓝;2红;2蓝 摸3个球可能出现的情况:2红1蓝;2蓝1红;3红;3蓝 摸4个球可能出现的情况:2红2蓝;1红3蓝;1蓝3红;4红;4蓝 摸5个球可能出现的情况:4红1蓝;3蓝2红;3红2蓝;4蓝1红;5红;5蓝 教师:通过验证,说说你们得出什么结论。 小结:盒子里有同样大小的红球和蓝球各4个。想要摸出的球一定有2个同色的,最少要摸3个球。 2.引导学生把具体问题转化为“鸽巢问题”。 教师:生活中像这样的例子很多,我们不能总是猜测或动手试验吧,能不能把这道题与前面所讲的“鸽巢问题”联系起来进行思考呢? 思考: a.“摸球问题”与“鸽巢问题”有怎样的联系? b.应该把什么看成“鸽巢”?有几个“鸽巢”?要分放的东西是什么? c.得出什么结论? 学生讨论,汇报。 教师讲解:因为一共有红、蓝两种颜色的球,可以把两种“颜色”看成两个“鸽巢”,“同色”就意味着“同一个鸽巢”。这样,把“摸球问题”转化“鸽巢问题”,即“只要分的物体个数比鸽巢多,就能保证有一个鸽巢至少有两个球”。 从最特殊的情况想起,假设两种颜色的球各拿了1个,也就是在两个鸽巢里各拿了一个球,不管从哪个鸽巢里再拿一个球,都有两个球是同色,假设最少摸a个球,即(a)÷2=1……(b)当b=1时,a就最小。所以一次至少应拿出1×2+1=3个球,就能保证有两个球同色。 结论:要保证摸出有两个同色的球,摸出的数量至少要比颜色种数多一。 三、课堂作业 1.完成第70页“做一做”的第2题。 (1)学生独立思考。 (提示:把什么看做鸽巢?有几个鸽巢?要分的东西是什么?) (2)同桌讨论。 (3)汇报交流。 2.完成教材第71页练习十三的4-6题。 四、课堂小结 本节课你有什么收获? |
||||
![]() |
摘自《雪粒飞舞fumin的博客》网站 | |||
上一篇 | |||
下一篇 | |||